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 A B S T R A C T

Regional differences in carbon emission efficiency arise from disparities in multiple factors, which are often 
influenced by government policy preferences. However, currently, most studies fail to consider the impact 
of government policy preferences and data uncertainty on carbon emission efficiency. To address the above 
limitations, this study proposes a hybrid model based on delta-slacks-based model and ordinal priority approach 
for measuring carbon emission efficiency driven by government policy preferences under data uncertainty. 
The proposed model incorporates constraints on the importance of inputs and outputs under different policy 
preference scenarios. It then develops the efficiency optimization model with Farrell frontiers and efficiency 
tapes to deal with the data uncertainty in inputs and outputs. This study demonstrates the proposed model 
by analyzing industrial carbon emission efficiency in Chinese provinces in 2021. It examines the carbon 
emission efficiency and corresponding clustering results of provinces under three types of policies with varying 
priority preferences. The results indicate that the carbon emission efficiency of the 30 provinces can mainly be 
categorized into technology-driven, development-balanced, and transition-potential types, with most provinces 
achieving optimal efficiency under the technology-dominant preferences. Ultimately, this study suggests policy 
recommendation for different provinces to work towards achieving the low carbon goal.
1. Introduction

The increasing emissions of greenhouse gases, represented by car-
bon dioxide, are exacerbating global climate change [1,2]. China, the 
world’s largest emitter of carbon dioxide, actively engages in inter-
national climate cooperation, taking responsibility for global emission 
reduction amid significant pressure to cut emissions and conserve 
energy [3]. At the 75th session of the United Nations General Assembly, 
the Chinese government pledged to ‘‘strive to peak carbon dioxide 
emissions before 2030 and achieve carbon neutrality before 2060’’, 
i.e., the dual carbon strategy [4]. Under the premise of sustained 
economic growth, how to effectively promote carbon emission effi-
ciency (CEE) has become an essential issue that China needs to address 
urgently. Currently, China’s industrial sector contributes 40.1% of GDP, 
but its energy consumption and carbon emissions account for 67.9% 
and 84.2% of the national total, respectively [5]. Improving industrial 
carbon emission efficiency (ICEE) has become crucial to achieving the 
dual carbon strategy. Notably, there are significant regional differences 
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in industrial sectors in terms of energy usage, operational efficiency, 
emission reduction potential, and technological levels, which leads to 
significant heterogeneity in efficiency across regions [6]. Therefore, the 
government must develop region-specific evaluation systems for ICEE 
based on the regional endowment, which usually reflects the policy 
preference. Specifically, policy preference refers to the government 
tendency to focus on particular objective or interests when prioritizing 
policies [7]. This tendency is essential in guiding government decisions 
on resource allocation, policy implementation, and monitoring. Pol-
icy preferences also reflect the degree of integration and importance 
governments attach to individual national development strategies in 
policy formulation. Studies have shown that the policy preferences of 
government can significantly impact carbon emissions [8]. Changes in 
these preferences, along with shifts in industrial structure and govern-
ment interventions, profoundly affect the efficacy of reducing carbon 
emissions. Policy preferences directly shape the prioritization of policy 
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implementation. The significance of inputs and outputs varies when 
assessing CEE under different policies.

1.1. Related literature

Studies related to CEE evaluation have mainly gone through a 
progression from single factor analysis to total factor analysis. Econom-
ically, the total output to total input factors ratio is typically employed 
to assess CEE. CEE was originally a single-factor measure defined 
by Yoichi Kaya et al. [9] as GDP divided by carbon emissions over 
time. Subsequent research has introduced many additional indicators, 
including the carbon index, carbon intensity, energy intensity, and 
emissions per capita per unit of GDP [10]. However, the single-factor 
approach is inadequate for capturing the multidimensional aspects of 
CEE. Consequently, a total factor approach has emerged, incorporat-
ing labor scale, capital inputs, and energy consumption to provide a 
comprehensive view of CEE [11,12]. Since the introduction of the total 
factor concept to energy efficiency measurement, it has gained promi-
nence in academia. Methods for analyzing CEE are broadly categorized 
into parametric and non-parametric methods. However, parametric 
methods require a predetermined production function, which presents a 
practical challenge [13]. Thus, this study focuses on the non-parametric 
method, specifically DEA and its extensions, which currently dominates 
research in this field. Table  A.1 outlines the critical literature on 
non-parametric methods for assessing CEE.

Table  A.1 illustrates that recent studies have evaluated CEE with 
decision-making units (DMUs) across national, regional, industry,
provincial, and municipal levels, considering regular, embedded carbon 
emissions, water pollution and carbon neutrality, and coordinated gov-
ernance perspectives. The primary data envelopment analysis (DEA)-
based non-parametric methods for CEE include radial, non-radial, 
and directional distance functions. In terms of the radial model, Liu 
et al. [14] applied the BCC model to assess changes in industrial 
eco-efficiency across 16 prefecture-level cities in Anhui, China from 
a static viewpoint. Ding et al. [15] performed a comparative analysis 
of CEE among 30 provinces in China using the CCR and BCC models. 
However, these conventional radial models overlook the selection of 
radial direction in efficiency measurement and encounter issues with 
slack efficiency measurement [16]. To address these issues, several 
studies have utilized the non-radial super-SBM model to measure CEE. 
For example, Jiang et al. [17] applied super-SBM to evaluate CEE 
in the logistics industry across 12 pilot regions in China. Gao et al. 
[18] integrated the trade openness factor into the embedded carbon 
emission perspective and employed super-SBM to analyze CEE across 
28 industrial sectors in China. Jiang et al. [19] measured the CEE 
of 30 cities in Northwest China from 2011 to 2020 using a super-
efficient SBM model based on the dual perspectives of water pollution 
and carbon neutrality. Fang et al. [20] utilized super-SBM to assess 
CEE at 42 thermal power plants in China in 2020 from a microscopic 
perspective. Meanwhile, to enhance environmental efficiency assess-
ment incorporating undesirable outputs, Chung et al. [21] introduced 
the radial DDF based on Shepherd’s approach. However, the radial 
DDF fails to eliminate inefficiencies caused by input and output slack, 
potentially leading to overestimating CEE. Färe and Grosskopf [22] 
introduced a generalized NDDF for total factor energy productivity, 
relaxing the requirement for desired and undesirable outputs to vary 
proportionally. Fukuyama and Weber [23] developed the SBM-DDF 
model for CEE, which integrates undesirable outputs to mitigate ra-
dial and directional biases. Moreover, some studies have proposed 
a multi-stage DEA model combining parametric and non-parametric 
approaches [24]. Among them, the most representative is three-stage 
DEA, which is capable of incorporating environmental factors and 
random noise in the assessment of efficiency [25].

However, it is noteworthy that the assessment of CEE depends 
heavily on the value judgments that policymakers make about the 
resource allocation scenarios and the future of the economy and the 
2 
environment [26]. This process highlights the potential impact of pol-
icy preferences on CEE, which refers to the specific preferences or 
prioritized objectives the government holds when formulating policies 
or selecting options. In the assessment of CEE, policy preferences can 
influence local behavior and decision-making through a variety of 
mechanisms that promote the transition of the industrial sector towards 
a higher level of efficiency and cleaner production patterns [27]. The 
empirical study conducted by Meng et al. [28] revealed significant 
discrepancies in the carbon emission performance of the manufacturing 
sector when subjected to scale-oriented and innovation-oriented carbon 
reduction policy preferences. Therefore, a profound comprehension 
and rigorous consideration of policy preferences is essential to assess 
alterations in CEE with precision. Such an analysis will assist the 
government in formulating more effective carbon emission reduction 
policies, considering the varying circumstances of different regions. 
Nevertheless, only a limited number of studies that assess CEE take 
policy preferences into account. In addition, the potential implications 
of data uncertainties should be considered, which may arise from fac-
tors such as statistical inaccuracies or human interference. These factors 
could significantly influence the assessment of CEE based on policy 
preferences, which represents a limitation of the current research [29].

To overcome the above limitations, the objective of this study is to 
propose a model for measuring CEE from the total factor perspective 
that can accommodate the various policy preference scenarios and 
account for potential data uncertainty.

1.2. Contributions

This study proposes a hybrid model based on delta-slacks-based 
model (𝛿-SBM) and ordinal priority approach (OPA) for CEE analysis 
under policy preferences and data uncertainty. Using the proposed 
model, this study examines the efficiency differences under economic, 
environmental, and technological priority policies and their preference 
scenario through an illustrative demonstration of the ICEE across 30 
provinces of China in 2021. Then, K-means clustering is employed to 
analyze the weight frontiers of inputs and outputs across provinces 
under various policy scenarios, identifying groups with similar char-
acteristics. Benchmark provinces in each category are identified by 
comparing the optimal efficiencies of provinces in each group. Finally, 
this study offers policy recommendations for different provinces to 
achieve carbon emission reduction, offering practical guidance for 
industrial sectors.

The primary contribution of this study lies in proposing hybrid 
𝛿-SBM-OPA model for analyzing CEE that can address policy pref-
erences and data uncertainties within the decision-making scenario. 
Specifically:

• Methodologically, the proposed model formulates policy prefer-
ences as scenario constraints, thereby determining the efficiency 
of DMUs under the specific policy preference scenarios based 
on human judgment and actual input and output data. Unlike 
extended DEA models that rely on predetermined weights, the 
proposed model can be regarded as an integrated approach that 
narrows the feasible region of the original model through policy 
preferences, subsequently optimizing a set of optimal weights. 
Furthermore, the proposed model establishes efficiency tapes for 
inputs and outputs facing data uncertainty and calculate corre-
sponding sensitivity indicators to better distinguish the efficiency 
of individual DMUs, providing more reliable analytical results.

• Practically, the proposed model offers policymakers a customiz-
able and robust tool for analyzing CEE. Policymakers can observe 
changes in the CEE of DMUs under different policy scenarios 
by setting various policies with specific preferences. Conducting 
cluster analysis on optimal efficiencies and the weight frontier of 
inputs and outputs under different scenarios can reveal the op-
timal scenarios and developmental paths for DMUs to formulate 
relevant policies.
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1.3. Organization

The remainder of this paper is organized as follows: Section 2 
introduces the preliminary related to the basic model, i.e., OPA and 𝛿-
SBM. Section 3 proposes the 𝛿-SBM-OPA model. Section 4 demonstrates 
the proposed model with a case study analyzing ICEE among Chinese 
provinces in 2021, considering specific policy preferences. Section 5 
further discusses the variations in ICEE among Chinese provinces under 
different policy preferences and offers corresponding policy recom-
mendations. Finally, Section 6 summarizes the findings and future 
directions.

2. Preliminary

This section outlines the preliminaries of OPA and 𝛿-SBM, forming 
the foundation for the proposed hybrid 𝛿-SBM-OPA model.

2.1. Ordinal priority approach

OPA is a promising multi-criteria decision-making (MCDM) tech-
nique under incomplete information [30]. The method applies across 
diverse contexts of MCDM, encompassing the determination of weights 
for experts, criteria, and alternatives in group and individual decision-
making [31]. The strength of OPA lies in its utilization of more stable 
and readily accessible ranking data as inputs, thereby obtaining the 
weights for experts, criteria, and alternatives simultaneously through 
solving a linear programming model [32,33]. OPA has found extensive 
application in domains such as supplier selection [34], portfolio selec-
tion [35], performance evaluation [36], and project planning [37,38]. 
In this study, OPA will be utilized to incorporate the contextual con-
straints of policy preference for 𝛿-SBM, restricting the impact of varying 
policy preferences on the efficiency of DMUs.

Consider a problem where a decision-maker must assign weights to 
rank a set of criteria,  ∶= {1, 2,… , 𝐽}, indexed by 𝑗, based on the 
evaluation of a set of experts,  ∶= {1, 2,… , 𝐾}, indexed by 𝑘. The 
initial step of OPA involves determining the rank of expert 𝑠𝑘 ∈ [𝐾]
for all 𝑘 ∈ , considering aspects like domain expertise, professional 
experience, job titles, and positions. Subsequently, each expert 𝑘 ∈ 
independently assigns rank to criteria 𝑟𝑗𝑘 ∈ [𝐽 ] for all 𝑗 ∈   based 
on their own judgment and preferences. To facilitate the following 
discussion, define the following three sets:
1 ∶= {(𝑗, 𝑘, 𝑙) ∈  × × ∶ 𝑟𝑗𝑙 = 𝑟𝑗𝑘 + 1, 𝑟𝑗𝑘 = 1, 2,… , 𝐽 − 1},

2 ∶= {(𝑗, 𝑘) ∈  × ∶ 𝑟𝑗𝑘 = 𝐽},

 ∶= {(𝑗, 𝑘) ∈  ×}.

Intuitively, 1 contains the indices of criteria with consecutive rankings 
for each expert, while 2 contains the indices of criteria ranked given 
by each expert, and  ∶= 1 ∪2 represents the indices of all experts 
and criteria. OPA seeks to maximize weight disparities that reflect 
expert preferences within the normalized weight space, through the 
following optimization model: 
max
𝒘,𝑍

𝑍,

s.t. 𝑠𝑘𝑟𝑗𝑘(𝑤𝑗𝑘 −𝑤𝑗𝑙) ≥ 𝑍, ∀(𝑗, 𝑘, 𝑙) ∈ 1,

𝑠𝑘𝑟𝑗𝑘(𝑤𝑗𝑘) ≥ 𝑍, ∀(𝑗, 𝑘) ∈ 2,
∑

𝑘∈

∑

𝑗∈
𝑤𝑗𝑘 = 1,

𝑤𝑗𝑘 ≥ 0, ∀(𝑗, 𝑘) ∈ ,

(1)

where 𝑍 represents the weight disparity scalar and 𝑤𝑗𝑘 denotes the 
weight of 𝑗 based on the evaluation of expert 𝑘. After solving Eq. (1), 
the weights of criteria 𝑤𝑗 for all 𝑗 ∈   are calculated according to Eq. 
(2). 
𝑤𝑗 =

∑

𝑤𝑗𝑘 ∀𝑗 ∈  (2)

𝑘∈

3 
2.2. Delta-slacks-based model

DEA, a non-parametric data analysis method, primarily assesses 
the performance of DMUs with multiple inputs and outputs [39]. 
Traditional DEA models, such as the CCR, BCC, ADD, and SBM, are 
significantly affected by the number of DMUs and the inputs and 
outputs [40]. As the number of DMUs decreases or inputs and out-
puts increase, the discriminative ability of traditional DEA models in 
evaluating DMU efficiency diminishes, tending to allocate more DMUs 
to technical efficiency scores. In practice, many input and output data 
exhibit a certain degree of uncertainty. This uncertainty primarily 
arises from factors such as information loss, knowledge constraints, 
and human errors, particularly in the field of carbon emissions data 
statistics [7,41]. The traditional DEA model fails to address efficiency 
evaluations when dealing with imprecise input and output data [42]. 
To overcome these limitations, Khezrimotlagh et al. [43] introduced 
the 𝛿-SBM model. It is a type of robust DEA model, exhibiting higher 
flexibility by rational adjustments to the Farrell frontier of inputs and 
outputs. It creates an effective band region that distinguishes the effi-
ciency levels among various DMUs. Therefore, this study mainly focuses 
on 𝛿-SBM as the main body of the proposed model for evaluating the 
efficiency of the DMUs with imprecise input and output data under 
policy preference.

Suppose there is a set of DMUs,  ∶= {1, 2,… , 𝐼}, indexed by 𝑖, 
each with input vector 𝒙𝑖 ∈ R𝐽−  and output vector 𝒚𝑖 ∈ R𝐽+ , where 
the sets of input and output criteria are  − ∶= {1, 2,… , 𝐽−} and 
 + ∶= {1, 2,… , 𝐽+}. Let 𝑤−

𝑗  and 𝑤+
𝑗  denote the given weights assigned 

to input 𝑗 ∈  − and output 𝑗 ∈  −, respectively. Given a degree of 
freedom 𝜀 for adjusting the Farrell frontier by shifting the inputs and 
outputs up or down, the 𝛿-SBM model for evaluating the performance 
of each DMU 𝑙 ∈  is formulated as: 
max

𝝀,𝒔− ,𝒔+

∑

𝑗∈ −
𝑤−

𝑗 𝑠
−
𝑙𝑗 +

∑

𝑗∈ +
𝑤+

𝑗 𝑠
+
𝑙𝑗 ,

s.t. 
∑

𝑖∈
𝜆𝑖𝑥𝑖𝑗 + 𝑠−𝑙𝑗 = 𝑥𝑙𝑗 + 𝜀−𝑗 , ∀𝑗 ∈  −,

∑

𝑖∈
𝜆𝑖𝑦𝑖𝑗 − 𝑠+𝑙𝑗 = 𝑦𝑙𝑗 + 𝜀+𝑗 , ∀𝑗 ∈  +,

𝑥𝑙𝑗 − 𝑠−𝑙𝑗 ≥ 0, ∀𝑗 ∈  −,

𝑦𝑙𝑗 + 𝑠+𝑙𝑗 − 2𝜀+𝑗 ≥ 0, ∀𝑗 ∈  +,

𝜆𝑖, 𝑠
−
𝑙𝑗 , 𝑠

+
𝑙𝑗 ≥ 0, ∀𝑖 ∈ , 𝑗 ∈  − ∪  +,

(3)

where 𝑠−𝑙𝑗 and 𝑠+𝑙𝑗 are the slack variables for input 𝑗 ∈  − and output 
𝑗 ∈  + of DMU 𝑙, 𝜆𝑖 is the multiplier used to compute the linear 
combination of inputs and outputs for DMU 𝑖, and 𝜀−𝑗 = 𝜀𝑥𝑙𝑗 and 
𝜀+𝑗 = 𝜀𝑦𝑙𝑗 are allowed errors with 𝜀-degree of freedom for inputs 𝑗 ∈  −

and outputs 𝑗 ∈  + of DMU 𝑙.
After solving Eq. (3) for the optimal solution (𝝀∗, 𝒔−∗, 𝒔+∗), the best 

technical efficient target and score of DMU 𝑙 with 𝜀-degree of freedom 
can be represented as Eqs. (4) and (5). 
{

𝑥∗𝑙𝑗 = 𝑥𝑙𝑗 − 𝑠−𝑙𝑗
∗ + 𝜀−𝑗

𝑦∗𝑙𝑗 = 𝑦𝑙𝑗 + 𝑠+𝑙𝑗
∗ − 𝜀+𝑗

(4)

𝛾𝑙 =

∑

𝑗∈ + 𝑤+
𝑗 𝑦𝑙𝑗

/

∑

𝑗∈ − 𝑤−
𝑗 𝑥𝑙𝑗

∑

𝑗∈ + 𝑤+
𝑗 𝑦

∗
𝑙𝑗

/

∑

𝑗∈ − 𝑤−
𝑗 𝑥

∗
𝑙𝑗

(5)

The lower and upper bound of efficient target of DMU 𝑙 with 𝜀-
degree of freedom be represented as Eqs. (6) and (7), respectively. 

{

𝑥+𝑙𝑗 = 𝑥𝑙𝑗 − 𝑠−𝑙𝑗
∗ + 2𝜀−𝑗

𝑦+𝑙𝑗 = 𝑦𝑙𝑗 + 𝑠+𝑙𝑗
∗ − 2𝜀+𝑗

(6)

{

𝑥−𝑙𝑗 = 𝑥𝑙𝑗 − 𝑠−𝑙𝑗
∗

𝑦− = 𝑦 + 𝑠+ ∗ (7)

𝑙𝑗 𝑙𝑗 𝑙𝑗
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The sensitivity score of DMU 𝑙 for the uncertainty efficiency tape 
with 𝜀-degree of freedom is shown in Eq.  (8). 

𝜂𝑙 =

∑

𝑗∈ + 𝑤+
𝑗 𝑦

+
𝑙𝑗

/

∑

𝑗∈ − 𝑤−
𝑗 𝑥

+
𝑙𝑗

∑

𝑗∈ + 𝑤+
𝑗 𝑦

−
𝑙𝑗

/

∑

𝑗∈ − 𝑤−
𝑗 𝑥

−
𝑙𝑗

(8)

Notably, the assigned weight 𝑤−
𝑗  of each input variable can be 

defined as 1∕min𝑖∈ {𝑥𝑖𝑗}, 1∕max𝑖∈{𝑥𝑖𝑗} or 1∕avg𝑖∈{𝑥𝑖𝑗} and so on. 
And the weights 𝑤+

𝑗  of each output variables can be defined in the 
same way of 𝑦𝑖𝑗 . However, when setting weights for inputs and out-
puts, it essentially involves non-dimensional standardization in the 
original 𝛿-SBM model, overlooking the subjective judgment and prefer-
ence of decision-makers [36,44]. This factor might lead to impractical 
solutions, particularly when considering impact of varying policy pref-
erences on CEE analysis. Hence, it becomes necessary to incorporate 
weights 𝑤−

𝑗  and 𝑤+
𝑗  as variables of the 𝛿-SBM model, originating from 

the decision-makers’ preference perspective. In the next section, the 𝛿-
SBM-OPA model will be proposed for carbon emission analysis under 
policy preference with the aid of Eqs. (1) and (3).

3. The proposed model for carbon efficiency analysis under policy 
preference

This study focuses on CEE analysis under policy preference, where 
policymakers provide their preferences for policies along with the 
corresponding inputs and outputs. Consider a set of DMUs,  ∶=
{1, 2,… , 𝐼}, indexed by 𝑖, that need to be evaluated for CEE based on 
their performance 𝒙𝑖 ∈ R𝐽−  on a set of inputs  − ∶= {1, 2,… , 𝐽−} and 
𝒚𝑖 ∈ R𝐽+  on a set of outputs  + ∶= {1, 2,… , 𝐽+}. Let  ∶= {1, 2,… , 𝐾}
represent the set of government policies, indexed by 𝑘. Policymakers 
first rank the policies 𝑠𝑘 ∈ [𝐾] for each policy 𝑘 ∈  based on 
their preferences. Subsequently, the rankings of criteria (i.e., inputs and 
outputs) 𝑟𝑗𝑘 ∈ [𝐽 ] for all criteria 𝑗 ∈  − ∪  + under policy 𝑘 ∈  are 
provided based on policymakers evaluations or data analysis. In this 
context, the inputs and outputs of the DMUs serve as the basic data for 
traditional CEE, while the policy rankings and the rankings of inputs 
and outputs under different policies that reflects the policy preference 
are the additional data required for the proposed model.

In this section, a hybrid 𝛿-SBM-OPA model is proposed to analyze 
the CEE under multiple scenarios with different government policy 
preferences. The first step is to derive the dual problem of the original 𝛿-
SBM model since it offers lucid guidance on the weightage information 
to criteria (i.e., inputs and outputs). These weights delineate how each 
DMU prioritizes its inputs and outputs (e.g., capital inputs, industrial 
output, and carbon emissions) when striving for optimal efficiency of 
carbon emission considering policy preference. Moreover, the transfor-
mation of a dual problem converts the initial nonlinear optimization 
problem into a linear optimization and reduces the number of decision 
variables involved. The dual problem of the original 𝛿-SBM model is 
shown in Eq.  (9). 

min
𝒗− ,𝒖+ ,𝜽− ,𝝈+

∑

𝑗∈ −
(𝑥𝑙𝑗 + 𝜀−𝑗 )𝑣

−
𝑗 +

∑

𝑗∈ −
𝑥𝑙𝑗𝜃

−
𝑗

−
∑

𝑗∈ +
(𝑦𝑙𝑗 + 𝜀+𝑗 )𝑢

+
𝑗 −

∑

𝑗∈ +
(𝑦𝑙𝑗 − 2𝜀+𝑗 )𝜎

+
𝑗

s.t. 
∑

𝑗∈ −
𝑥𝑖𝑗𝑣

−
𝑗 −

∑

𝑗∈ +
𝑦𝑖𝑗𝑢

+
𝑗 ≥ 0 ∀𝑖 ∈ 

𝑣−𝑗 + 𝜃−𝑗 ≥ 𝑤−
𝑗 ∀𝑗 ∈  −

𝑢+𝑗 + 𝜎+𝑗 ≥ 𝑤+
𝑗 ∀𝑗 ∈  +

𝜃−𝑗 ≥ 0, 𝜎+𝑗 ≤ 0 ∀𝑗 ∈  − ∪  +

(9)
4 
Define the following sets:

1 ∶= {(𝑗, 𝑘, 𝑙) ∈ ( − ∪  +) × × ( − ∪  +) ∶ 𝑟𝑙𝑘 = 𝑟𝑗𝑘 + 1,

𝑟𝑗𝑘 = 1, 2,… , 𝐽− + 𝐽+ − 1},

2 ∶= {(𝑗, 𝑘) ∈ ( − ∪  +) × ∶ 𝑟𝑗𝑘 = 𝐽− + 𝐽+}.

Eqs. (1) and (9) are integrated into a multi-objective optimization 
model, illustrated in Eq.  (10), to account for the influence of policy 
preferences on the importance of inputs and outputs in analyzing
CEE. 

min
𝒗− ,𝒖+ ,𝜽− ,𝝈+

∑

𝑗∈ −
(𝑥𝑙𝑗 + 𝜀−𝑗 )𝑣

−
𝑗 +

∑

𝑗∈ −
𝑥𝑙𝑗𝜃

−
𝑗

−
∑

𝑗∈ +

(𝑦𝑙𝑗 + 𝜀+𝑗 )𝑢
+
𝑗 −

∑

𝑗∈ +

(𝑦𝑙𝑗 − 2𝜀+𝑗 )𝜎
+
𝑗

max
𝒘,𝑍

𝑍

s.t. 
∑

𝑗∈ −
𝑥𝑖𝑗𝑣

−
𝑗 −

∑

𝑗∈ +

𝑦𝑖𝑗𝑢
+
𝑗 ≥ 0 ∀𝑖 ∈ 

𝑣−𝑗 + 𝜃−𝑗 ≥
∑

𝑘∈
𝑤𝑗𝑘

/

max
𝑖∈

{𝑥𝑖𝑗} ∀𝑗 ∈  −

𝑢+𝑗 + 𝜎+
𝑗 ≥

∑

𝑘∈
𝑤𝑗𝑘

/

min
𝑖∈

{𝑦𝑖𝑗} ∀𝑗 ∈  +

𝑠𝑘𝑟𝑗𝑘(𝑤𝑗𝑘 −𝑤𝑙𝑘) ≥ 𝑍 ∀(𝑗, 𝑘, 𝑙) ∈ 1

𝑠𝑘𝑟𝑗𝑘(𝑤𝑗𝑘) ≥ 𝑍 ∀(𝑗, 𝑘) ∈ 2

∑

𝑘∈

∑

𝑗∈ −∪ +

𝑤𝑗𝑘 = 1

𝜃−𝑗 , 𝑤
𝑡
𝑗𝑘 ≥ 0, 𝜎+

𝑗 ≤ 0 ∀𝑗 ∈  + ∪  −, 𝑘 ∈ 

(10)

where 𝜀+𝑗 = 1∕max𝑖∈{𝑥𝑖𝑗} and 𝜀−𝑗 = 1∕min𝑖∈{𝑥𝑖𝑗}. In Eq.  (10), the first 
objective function and the first constraint belong to the dual problem 
of 𝛿-SBM in Eq.  (9). The second objective function and the fourth, fifth, 
and sixth constraints belong to OPA in Eq.  (1). The right-hand side of 
the second and third constraint is the output of OPA in Eq.  (1), and 
the left-hand side is the input of 𝛿-SBM in Eq.  (9). From a modeling 
perspective, OPA provides 𝛿-SBM with lower bound constraints on the 
importance of inputs and outputs that take policy preferences into
account.

Eq. (10) presents a multi-objective optimization model, which can 
be solved through various methods like Pareto-optimality, goal pro-
gramming, budgeted-constraint approach, and the max–min approach
[36,45,46]. This study utilizes the weighted max–min approach due 
to its flexibility for policymakerss to express the relative importance 
between 𝛿-SBM and OPA. Since the scales differ between 𝛿-SBM and 
OPA, Eq. (11) is utilized to transform the objective functions into 
non-dimensional counterparts, with values fall within the range of
[0,1]. 

𝑓 𝑡𝑟𝑎𝑛𝑠
𝑘 =

max{𝑓𝑘(𝑥)} − 𝑓𝑘(𝑥)
max{𝑓𝑘(𝑥)} − min{𝑓𝑘(𝑥)}

(11)

Lemma 1.  For the optimal value 𝑍∗ of Eq.  (1), 𝑍∗ ∈ [0, 1] holds.

Proof.  The proof of Lemma  1 is provided in Appendix. □

Lemma  1 implies that the optimal value 𝑍 is dimensionless and lies 
within the interval [0,1]. Given its suitable numerical scale, further 
transformation in Eq.  (11) is unnecessary.

Denote 𝑈𝑆 and 𝑈𝑃  as the weights of the objective functions of 
the 𝛿-SBM and OPA models, respectively, where 𝑈𝑆 + 𝑈𝑃 = 1. Then, 
Eq. (10) can be transferred into weighted max–min form, as shown in
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Eq.  (12). 

maxmin
𝒗−, 𝒖+,𝜽−,𝝈+

𝒘, 𝑍

{𝑈𝑆 [𝑓 𝑡𝑟𝑎𝑛𝑠
𝑘 (

∑

𝑗∈ −

(𝑥𝑙𝑗 + 𝜀−𝑗 )𝑣
−
𝑗 +

∑

𝑗∈ −

𝑥𝑙𝑗𝜃
−
𝑗

−
∑

𝑗∈ +

(𝑦𝑙𝑗 + 𝜀+𝑗 )𝑢
+
𝑗

−
∑

𝑗∈ +

(𝑦𝑙𝑗 − 2𝜀+𝑗 )𝜎
+
𝑗 )], 𝑈𝑃𝑍}

s.t. 
∑

𝑗∈ −

𝑥𝑖𝑗𝑣
−
𝑗 −

∑

𝑗∈ +

𝑦𝑖𝑗𝑢
+
𝑗 ≥ 0 ∀𝑖 ∈ 

𝑣−𝑗 + 𝜃−𝑗 ≥
∑

𝑘∈
𝑤𝑗𝑘

/

max
𝑖∈

{𝑥𝑖𝑗} ∀𝑗 ∈  −

𝑢+𝑗 + 𝜎+
𝑗 ≥

∑

𝑘∈
𝑤𝑗𝑘

/

min
𝑖∈

{𝑦𝑖𝑗} ∀𝑗 ∈  +

𝑠𝑘𝑟𝑗𝑘(𝑤𝑗𝑘 −𝑤𝑙𝑘) ≥ 𝑍 ∀(𝑗, 𝑘, 𝑙) ∈ 1

𝑠𝑘𝑟𝑗𝑘(𝑤𝑗𝑘) ≥ 𝑍 ∀(𝑗, 𝑘) ∈ 2

∑

𝑘∈

∑

𝑗∈ −∪ +

𝑤𝑗𝑘 = 1

𝜃−𝑗 , 𝑤
𝑡
𝑗𝑘 ≥ 0, 𝜎+

𝑗 ≤ 0 ∀𝑗 ∈  + ∪  −,

𝑘 ∈ 

(12)

The optimization model in max–min form can be further trans-
formed into a linear programming problem by variable substitution. 
Let 
𝜉 = min {𝑈𝑆 [𝑓 𝑡𝑟𝑎𝑛𝑠

𝑘 (
∑

𝑗∈ −
(𝑥𝑙𝑗 + 𝜀−𝑗 )𝑣

−
𝑗 +

∑

𝑗∈ −
𝑥𝑙𝑗𝜃

−
𝑗

−
∑

𝑗∈ +
(𝑦𝑙𝑗 + 𝜀+𝑗 )𝑢

+
𝑗 −

∑

𝑗∈ +
(𝑦𝑙𝑗 − 2𝜀+𝑗 )𝜎

+
𝑗 )], 𝑈𝑃𝑍}.

(13)

Then, substituting Eq. (13) into Eq. (12) yields a single objective 
linear optimization model, as demonstrated by Proposition  1. 

Proposition 1.  Given the input and output values of all DMUs, along with 
the variable prioritization based on a particular policy preference scenario, 
the 𝛿-SBM-OPA model for CEE assessment considering policy preference is 
formulated as Eq. (14). 

max
𝒗−, 𝒖+,𝜽−,
𝝈+,𝒘, 𝑍, 𝜉

𝜉

s.t. 𝑈𝑆 [𝑓 𝑡𝑟𝑎𝑛𝑠
𝑘 (

∑

𝑗∈ −

(𝑥𝑙𝑗 + 𝜀−𝑗 )𝑣
−
𝑗 +

∑

𝑗∈ −

𝑥𝑙𝑗𝜃
−
𝑗

−
∑

𝑗∈ +

(𝑦𝑙𝑗 + 𝜀+𝑗 )𝑢
+
𝑗 −

∑

𝑗∈ +

(𝑦𝑙𝑗 − 2𝜀+𝑗 )𝜎
+
𝑗 )] ≥ 𝜉

𝑈𝑃𝑍 ≥ 𝜉
∑

𝑗∈ −

𝑥𝑖𝑗𝑣
−
𝑗 −

∑

𝑗∈ +

𝑦𝑖𝑗𝑢
+
𝑗 ≥ 0 ∀𝑖 ∈ 

𝑣−𝑗 + 𝜃−𝑗 ≥
∑

𝑘∈
𝑤𝑗𝑘

/

max
𝑖∈

{𝑥𝑖𝑗} ∀𝑗 ∈  −

𝑢+𝑗 + 𝜎+
𝑗 ≥

∑

𝑘∈
𝑤𝑗𝑘

/

min
𝑖∈

{𝑦𝑖𝑗} ∀𝑗 ∈  +

𝑠𝑘𝑟𝑗𝑘(𝑤𝑗𝑘 −𝑤𝑙𝑘) ≥ 𝑍 ∀(𝑗, 𝑘, 𝑙) ∈ 1

𝑠𝑘𝑟𝑗𝑘(𝑤𝑗𝑘) ≥ 𝑍 ∀(𝑗, 𝑘) ∈ 2

∑

𝑘∈

∑

𝑗∈ −∪ +

𝑤𝑗𝑘 = 1

𝜃−𝑗 , 𝑤
𝑡
𝑗𝑘 ≥ 0, 𝜎+

𝑗 ≤ 0 ∀𝑗 ∈  + ∪  −,

𝑘 ∈ 

(14)

The optimal solution set (𝑣−𝑗 ∗, 𝜃−𝑗
∗, 𝑢+𝑗

∗, 𝜎+𝑗
∗, 𝑤∗

𝑗𝑘) from Proposition 
1 using the max–min method may not all be efficient. Nevertheless, 
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at least one element of this set is an efficient point for the multi-
objective optimization model described in Eq.  (10) [31,47]. After solv-
ing Eq. (14), Eqs. (4)–(8) can be employed to calculated the best 
technical efficiency score, lower and upper bound of efficiency, and 
sensitivity score of DMU 𝑙 under specific policy preference. Ultimately, 
policymakers can cluster DMUs based on the weights of inputs and out-
puts, facilitating an analysis of consolidating efficiency targets within 
each category. This approach helps to develop the most effective devel-
opmental path for DMUs under specific policy preference.

When applying the proposed 𝛿-SBM-OPA model, several key con-
siderations must be addressed. First, policymakers should define the 
research subjects (i.e., DMUs) and their corresponding inputs and out-
puts. The model is applicable to DMUs of various scales, such as 
industries, cities, provinces, or countries. In determining DMUs and 
inputs and outputs, traditional DEA models impose a key requirement: 
the number of DMUs must meet an empirical relationship with the 
number of inputs and outputs, such as 𝐼 > 2 × 𝐽− × 𝐽+ or 𝐼 >
3 × (𝐽− + 𝐽+). However, the proposed model, inheriting the strengths 
of the 𝛿-SBM model, can handle situations where the number of DMUs 
is fewer than the number of inputs and outputs, meaning it does not 
require adherence to the traditional DEA constraints on DMU and 
input–output variable quantities. Furthermore, policymakers need to 
clearly define the policies to be analyzed, ensuring that these policies 
can influence DMU efficiency. Additionally, policymakers must provide 
a ranking of policy importance and assess the significance of inputs and 
outputs under different policy scenarios. Section 4 will present a case 
study using the ICEE analysis of Chinese provinces to demonstrate the 
proposed model.

4. Illustrative demonstration of industrial sector in Chinese
provinces

This section demonstrates the application of the 𝛿-SBM-OPA model 
through an ICEE analysis of 30 Chinese provinces in 2021, covering 
data collection, policy scenario analysis, and result interpretation.

4.1. Data collection

This study selects capital, labor, energy, and technology as input 
variables, with industry output and CO2 emissions as output vari-
ables [48]. Compared to the common inputs and outputs utilized in 
other ICEE studies, this study introduces technology as a novel input 
variable, thereby facilitating a more comprehensive ICEE analysis. As 
technology develops, the incorporation of the technology factor into 
production processes and energy consumption has the potential to 
significantly impact carbon emissions. The following presents the data 
collection and processing of inputs and outputs.

Input variable. Considering the influence of capital input character-
istics on industrial sector output, this research focuses on capital stock 
(𝐾), specifically using net fixed assets of large industrial enterprises 
as a proxy [49]. Unlike using the perpetual inventory method, this 
study avoids assumptions about depreciation rates, which are often 
arbitrarily set around figures like 9.6% or 6%. Labor (𝐿) represents 
the average number of employees in industrial enterprises above the 
designated size [50]. About 95% of the carbon dioxide produced by 
human activities comes from the use of fossil fuels. Energy (𝐸) is there-
fore represented by the final consumption of the eight primary fossil 
fuels, converted into standard coal equivalent. These fuels includes hard 
coal, coke, crude oil, petrol, kerosene, diesel, heating oil, and natural 
gas. Internal expenditure on R&D by industrial enterprises above the 
designated size represents technology (𝑇 ) [51].

Output variable. The primary business income (𝑌 ) of industrial 
enterprises above the designated size represents industrial output. No-
tably, most studies do not use gross industrial output value as a measure 
of industrial output value, mainly because the Chinese Industrial Econ-
omy Statistical Yearbook stopped reporting data on gross industrial 
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Table 1
Descriptive statistics of inputs and outputs.
 Index Unit Observations Min Max Mean Std.Dev  
 𝐿 104 persons 30 11.520 1354.170 264.943 295.491  
 𝐾 100 million RMB 30 1391.000 35,789.800 12,619.230 8347.020  
 𝑇 100 million RMB 30 13.849 2902.185 583.726 727.053  
 𝐸 106 tons 30 0.625 113.427 32.842 24.624  
 𝑌 100 million RMB 30 2676.140 173,649.700 43,804.720 41,142.540 
 𝐶 106 tons 30 1.351 323.748 90.161 69.585  
Table 2
Ranking of inputs and outputs under different policies.
 Policy 𝐿 𝐾 𝑇 𝐸 𝑌 𝐶 
 Economic priority policy (P1) 4 2 3 5 1 6  
 Environmental priority policy (P2) 3 4 6 2 4 1  
 Technological priority policy (P3) 4 3 1 6 2 5  

output value in 2012 [28]. For carbon dioxide (CO2) emissions (𝐶), 
given that there is no direct access to industrial CO2 emissions by 
region from any statistical review or database. This study uses the 
method of the International Panel on Climate Change to estimate 
industrial CO2 emissions across 30 provinces of China in 2021 [52]. 
The formula for measuring carbon dioxide emissions 𝐶𝐸 follows: 

𝐶𝐸 =
8
∑

𝑖=1
𝐶𝐸𝑖 =

8
∑

𝑖=1
𝐸𝑖 ×𝑁𝐶𝑉𝑖 × 𝐶𝐸𝐹𝑖 × 𝐶𝑂𝐹𝑖 × 44∕12, (15)

where 𝑖 is the index of fossil fuel type, and 𝐶𝐸𝑖, 𝐸𝑖, 𝑁𝐶𝑉𝑖, 𝐶𝐸𝐹𝑖, and 
𝐶𝑂𝐹𝑖 represents the carbon dioxide emissions, consumption, average 
lower heating value, carbon content per unit calorific value, and carbon 
oxidation rate of fossile fuel 𝑖, respectively. This study adjusts the 
carbon emission factors according to the National Development and 
Reform Commission .

This study uses data from the 2021 China Industrial Statistical 
Yearbook, the China Energy Statistical Yearbook, the China Provincial 
Statistical Yearbook, and the China Science and Technology Statistical 
Yearbook to analyze ICEE in 30 Chinese provinces. It should be noted 
that the data related to Tibet, Hong Kong, Macao, and Taiwan are 
not discussed in this paper, as some of the data for these regions are 
missing. Table  1 shows the descriptive statistics of the data.

4.2. Policy preference analysis and setting

This study introduces three policy scenarios in response to the 
recent policy focus of China: economic, environmental, and technol-
ogy priorities. inputs and outputs within each scenario are prioritized 
based on policy characteristics. Certain elements are clearly prioritized 
under each policy preference, while others remain uncertain. Hence, 
correlation analysis is employed in this study to rank the importance 
of these elements within each policy. Specifically, this study utilizes 
data from the primary element under each policy across 30 provinces 
as a reference series. Pearson correlation tests are conducted on the 
data of the other elements, ranking them within each policy based 
on Pearson coefficients from highest to lowest. Table  2 presents the 
ranking results of inputs and outputs under each policy. Subsequently, 
government policy preferences are formed by ranking the importance 
of these policies. This section demonstrates the proposed model using 
the policy preference scenario of ‘‘P1 > P2 > P3’’ as an illustrative 
example. Moreover, all other possible policy preference scenarios will 
be analyzed explicitly in Section 5.

4.3. Result analysis

The result analysis includes regional differences in ICEE and cluster 
analysis of provinces based on input and output variable weighting 
frontiers as different provinces achieve optimal efficiency.
6 
Fig. 1. Industrial Carbon Emission Efficiency Map of 30 Chinese Provinces in 2021.

4.3.1. Regional differences in industrial carbon emission efficiency
Fig.  1 depicts the ICEE across 30 provinces of China in 2021, as 

calculated by the proposed 𝛿-SBM-OPA method. The results demon-
strate that the mean value of ICEE across the 30 provinces is 0.623, 
with only 12 provinces exceeding the national average efficiency level. 
The provinces of Beijing, Shanghai, Guangdong, Jiangxi, and Hainan, 
respectively, have the highest efficiencies, all exceeding 0.990. The 
ICEE in Guizhou, Yunnan, Shaanxi, Ningxia, Hebei, Shanxi, Liaoning, 
Heilongjiang, Anhui, Shandong, Henan, Hubei, and Gansu is notably 
poor, with values below 0.500. The above indicates that the overall 
ICEE across China’s 30 provinces is low and exhibits considerable 
variation.

This study categorizes the provinces into eight economic regions 
divided by the State Council of China. The mean and variance of 
efficiencies across the provinces involved in the eight regions and the 
efficiencies for each province are presented in Table  A.2. The East and 
South Coasts exhibit the highest ICEE, with average values of 0.752 and 
0.989, respectively. The following are the North Coast, Middle Yangtze, 
Northeast, and Northwest, with the ICEE of 0.646, 0.601, 0.597, and 
0.562, respectively. However, the ICEE of the Southwest and Northwest 
is notably deficient, with values below 0.5000, at 0.498 and 0.487, 
respectively. As for the variance of regional ICEE, the East and South 
Coasts show quantum differences from the other regions, especially the 
South Coast at 0.001. In contrast, the variance in the other regions is 
within the interval [0.022,0.061]. As for provincial efficiencies within 
each region, the results show that all regions except the Southwest, 
Northwest, and Middle Yellow River regions have at least one province 
with an efficiency of 0.900 or higher. Noticeably, the three provinces 
on the South Coast (i.e., Fujian, Guangdong, and Hainan) all have 
efficiencies of 0.974 and above. This illustrates that the South Coast 
performs exceptionally well in terms of ICEE and has the potential to 
become a national benchmark for ICEE.

Subsequently, this study calculates the sensitivity of ICEE for each 
province within the specified uncertainty interval. Fig.  2 depicts the 
technical efficiency, upper and lower bounds, and sensitivities of ICEE 
across 30 provinces of China in 2021. The calculations show that the 
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Fig. 2. Sensitivity of province carbon emission efficiencies.

mean and standard deviation of the ICEE sensitivity are 1.035 and 
0.052, respectively. Notably, Hainan and Qinghai exhibit the highest 
sensitivity, reaching 1.237 and 1.189, respectively. These values exceed 
the mean plus double the standard deviation, indicating that these two 
provinces are particularly susceptible to data uncertainty. Even though 
the ICEE of Hainan has reached the efficiency frontier, its sensitivity 
score shows that there is still potential for further improvement in its 
efficiency level. In addition, the sensitivities of Ningxia, Heilongjiang, 
Guizhou, Gansu, and Jilin are higher than the national average. Hei-
longjiang, Guizhou, Gansu, and Ningxia also have low ICEE. Overall, 
evaluating ICEE is not the sole criterion in the context of 𝛿-SBM-OPA. 
Instead, it is essential to consider the uncertainty-oriented sensitivities 
of each province comprehensively. Only higher ICEE accompanied by 
more stable results can be considered efficiency targets.

4.3.2. Cluster analysis based on variable weighting frontier
This study uses the K-means clustering method, determining the 

optimal cluster number based on the elbow rule. Table  3 shows the 
clustering results. The clustering result displays a profile coefficient 
of 0.707, a DBI of 0.318, and a CH of 162.582, indicating a fa-
vorable clustering effect. Among them, 30 provinces are classified 
into three categories with proportions of 63.3%, 26.7%, and 10.0%, 
respectively. The variability in inputs and outputs indicates signifi-
cant differences across clustering categories at the 𝑝-value of 0.000∗∗∗. 
This study named the three categories as technology-driven provinces 
(TDP), development-balanced provinces (DBP), and transition-potential 
provinces (TPP) based on the centroid characteristics of the weights of 
the inputs and outputs in each cluster, as described in Table  4.

TDP covers Tianjin, Hebei, Neimenggu, and 14 other provinces. 
From the weights of each input and output variable, technical inputs 
are the most critical factor in evaluating ICEE among these provinces, 
with a weight of 0.512. Capital inputs, labor inputs, and industrial 
output follow it. For provinces in this category, technological innova-
tion is essential to boosting industrial productivity and reducing carbon 
emissions. At the same time, the focus on industrial output in these 
regions demonstrates their necessity to balance the need to safeguard 
a certain economic output level in the emission reduction process. 
Thus, this category is defined as a technology-driven province. Notably, 
among these regions, Neimenggu performs the best in ICEE and can be 
regarded as a benchmark of technology-driven provinces.
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DBP includes eight provinces, including Beijing, Shanghai, and 
Jiangxi. These provinces are relatively close to each input and out-
put ratio, with fluctuations ranging from 0.1 to 0.28. This indicates 
that the DBP region shows a balanced development in capital, labor, 
technology, and industrial output and is therefore classified as the 
development-balanced province. These regions emphasize the rational 
use of integrated resources, including labor, capital, technology, and 
energy, by optimizing the allocation of resources to achieve efficient 
operations and actively reducing carbon emissions. The ICEE values 
are generally high among the development-balanced provinces. Beijing, 
Shanghai, Jiangxi, Guangdong, and Hainan all have efficiency values 
over 0.99, which can be regarded as the benchmark provinces of the 
development-balanced provinces.

TPP includes the three provinces of Shanxi, Guangxi, and Xinjiang. 
These provinces have disadvantages in labor, capital, and energy con-
sumption and lack of attention to carbon emission outputs, but are 
prominent in technological inputs and industrial outputs. Thus, it is 
clear that these provinces are now focusing on upgrading their tech-
nological inputs to promote technological innovation and improve the 
output quality. However, there is still a need to focus on using resources 
efficiently and protecting the environment in economic development, 
significantly reducing carbon dioxide emissions. Given this, this paper 
considers these provinces as transition potential provinces. Among 
them, the ICEE of Xinjiang is relatively excellent and can be regarded 
as an exemplary province of transition potential.

5. Discussion

This section examines ICEE and clustering results based on weights 
of inputs and outputs across various policy preference scenarios. It 
also presents specific recommendations for carbon emission reduction 
policies and strategic measures tailored to different provinces. Method-
ologically, this analysis serves as a sensitivity assessment of ICEE under 
varying policy preferences. The three policies given in Section 4.2 is 
permuted to generate six policy preference scenarios, outlined in Table 
5. Initially, the ICEE under these scenarios is computed through the 
same process shown in Section 4. Subsequently, the cluster analysis on 
the weight characteristics of inputs and outputs is conducted to identify 
provinces exhibiting similar efficiency frontier features when achieving 
the optimal ICEE in different contexts.

Fig.  3 illustrates the ICEE under different policy preference scenar-
ios. The results show that the ICEE across provinces under different 
policy preference scenarios are generally similar. The national average 
efficiency is highest under S5 at 0.627 and lowest under S2 at 0.621. 
However, as seen from Fig.  4, there are significant differences in 
the sensitivities of ICEE across policy preference scenarios for the 30 
provinces in response to input data uncertainty. Hainan shows the most 
significant discrepancy at 21.5%, followed by Qinghai at 11.4%, while 
Guangdong shows the most minor discrepancy at 0.3%.

Table  6 shows the best policy preference options of provinces in 
each category and their corresponding efficiency performance. No-
tably, S1, S2, and S3 are not the best efficiency policy preference 
options for any province. In the technology-dominant policy preference 
scenario (i.e., S4 and S5), most provinces achieve the optimal level 
of ICEE, and S4 and S5 cover 23% and 67% of the total number 
of provinces, respectively. Under the environment-dominant policy 
preference scenario, Chongqing, Ningxia, and Hunan achieve optimal 
efficiency. Through K-means clustering analysis of indicator weights, 
regional groupings of provinces sharing similar efficiency frontiers is 
identified. Comparative analysis of optimal efficiency scores within 
each group pinpoint leading benchmark provinces in each category. 
The regional type of provinces is the same as in Section 4.3. The TDP 
includes 18 provinces, such as Tianjin and Chongqing, whose average 
optimal efficiency score is 0.543. Provinces above this average include 
Chongqing, Tianjin, Neimenggu, Jilin, Zhejiang, and Fujian. The TDP 
provinces have coverage ratios of 11%, 28%, and 61% under optimal 
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Table 3
K-means clustering results.
 Input and
output variables

Clustering categories (mean ±standard deviation) F P  

  
 Category 1

(n = 19)
Category 2
(n = 8)

Category 3
(n = 3)

 

 𝐿 0.105 ± 0.024 0.121 ± 0.006 0.047 ± 0.005 15.621 0.000***  
 𝐾 0.117 ± 0.017 0.173 ± 0.009 0.050 ± 0.008 79.475 0.000***  
 𝑇 0.512 ± 0.017 0.183 ± 0.043 0.440 ± 0.004 442.120 0.000***  
 𝐸 0.063 ± 0.032 0.109 ± 0.005 0.046 ± 0.004 10.126 0.001***  
 𝑌 0.162 ± 0.037 0.276 ± 0.017 0.369 ± 0.026 74.218 0.000***  
 𝐶 0.042 ± 0.000 0.138 ± 0.007 0.048 ± 0.006 1845.700 0.000***  
Note: ***, **, * represent 1%, 5%, and 10% significance levels, respectively.
Fig. 3. Technical efficiency of provinces under different policy preference scenarios.
Fig. 4. Optimal technical efficiency and percentage tape across different policy preference scenarios.
8 
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Table 4
Province classification.
 Clustering category Province  
 Technology-driven 
province (TDP)

Tianjin, Hebei, Neimenggu, Liaoning,
Heilongjiang, Jiangsu, Zhejiang, Anhui,
Shandong, Henan, Hubei, Hunan, Gansu 
Chongqing, Sichuan, Guizhou, Yunnan 
Shaanxi, Ningxia

 

 Development-balanced 
province (BDP)

Beijing, Jilin, Shanghai, Fujian,
Jiangxi, Guangdong, Hainan, Qinghai

 

 Transition-potential 
province (TPP)

Shanxi, Guangxi, Xinjiang  

Table 5
Policy preference settings.
 Policy preference Policy ranking 
 S1 P1 > P2 > P3 
 S2 P1 > P3 > P2 
 S3 P2 > P1 > P3 
 S4 P2 > P3 > P1 
 S5 P3 > P1 > P2 
 S6 P3 > P2 > P1 

Table 6
Optimal policy scenarios and corresponding efficiency for provinces under each
category.
 S4 S5 S6

 TDP Chongqing,
Ningxia

Tianjin, Neimenggu, 
Jilin, Liaoning, 
Heilongjiang, Jiangsu, 
Zhejiang, Fujian, 
Sichuan, Guizhou, 
Gansu

Hebei, Anhui, 
Shandong, Hubei,
Yunnan

 

 BDP Hunan Beijing, Shanghai, 
Jiangxi, Henan, 
Guangdong, Hainan, 
Shaanxi

Qinghai  

 TPP – Shanxi, Xinjiang Guangxi  

policy scenarios S4, S5, and S6, respectively. Notably, Fujian, with 
an optimal efficiency score of 0.977, stands out as the benchmark 
province in the TDP category. The BDP includes 9 provinces, such as 
Hunan, Beijing, and Shanghai, with an average optimal efficiency score 
of 0.7729. Provinces above this average include Beijing, Shanghai, 
Jiangxi, Guangdong, and Hainan. The BDP provinces have coverage 
ratios of 11%, 78%, and 11% under optimal policy scenarios S4, S5, and 
S6, respectively. Beijing, Shanghai, Guangdong, and Jiangxi provinces 
achieve the optimal ICEE values close to 1 and are recognized as 
benchmarks. The TPP includes three provinces: Shanxi, Xinjiang, and 
Guangxi, whose average optimal efficiency score is 0.692. Except for 
Shanxi, the ICEE of all other provinces are higher than this average. The 
ratio of TPP provinces under policy preference scenarios S5 and S6 is 
67% and 33%, respectively. Xinjiang becomes the benchmark province 
in this category, with an efficiency score of 0.872.

Based on the above results and the current economic status of each 
province, this study proposes policy recommendations for advancing 
the dual-carbon strategy in three categories of provinces:

• TDP: Provinces in TDP should actively promote research and de-
velopment of low-carbon technologies, using government funding 
to adopt efficient production technologies and innovative pro-
cesses to reduce energy consumption and emissions. Enterprises 
should invest in energy-saving equipment and intelligent control 
systems to improve energy use efficiency. At the same time, it 
should increase investment in clean energy sources such as solar 
and wind and reduce its dependence on fossil fuels. It should 
9 
also introduce foreign energy-saving technologies and techniques 
to improve industrial energy efficiency through technological 
innovation. Technology-driven provinces such as Ningxia and 
Chongqing should focus on advanced technologies and pay special 
attention to the sustainable use and conservation of water, land, 
energy, and natural resources. Ningxia’s industrial sector has low 
ICEE and needs to strengthen clean energy development and 
technological innovation. Ningxia and Qinghai are geographically 
similar, and they can establish a partnership to address environ-
mental challenges. Coastal areas such as Jiangsu, Zhejiang, and 
Fujian are suggested to utilize offshore wave and wind energy 
to accelerate the construction of a clean, low-carbon, safe, and 
efficient multi-energy supply system. In high-carbon regions such 
as Neimenggu, Gansu, Jilin, Heilongjiang, and Guizhou, local 
governments should promote the innovation and application of 
new technologies, guide enterprises to focus on the development 
of new and emerging technology industries and adjust the energy 
structure to promote the substitution of fossil energy with cleaner, 
renewable and non-carbon energy sources. Provinces like Hebei, 
Anhui, Shandong, Hubei, and Yunnan traditionally depend on 
abundant local energy resources. In the future, these regions must 
optimize their industrial structure, enhance energy efficiency, 
unlock emission reduction potential, and foster green regional 
economic growth and energy-saving practices.

• BDP: Provinces in BDP aiming for balanced development must 
adopt comprehensive strategies to reduce industrial CO2 emis-
sions. Adjusting policies for energy-intensive industries will op-
timize resource allocation and foster regional economic comple-
mentarity. Second, upgrading industries and maximizing resource 
utilization will enhance CEE,exemplified by national park con-
struction and pilot projects. Key provinces like Beijing, Shanghai, 
and Guangdong should leverage technological innovation to boost 
their economies and achieve harmonious economic and environ-
mental coexistence. These regions should collaborate on technol-
ogy and utilize innovative resources to establish an innovation-
driven economic system, setting benchmarks for development. 
Beijing and Guangdong can lead in implementing comprehen-
sive emission controls, while other areas should promote energy-
saving technologies to transition to low-carbon industries and en-
ergy sources. Concurrently, enhancing partnerships with Guangxi 
and other regions in clean services will support upgrading low-
carbon technologies and optimizing industrial structures across 
central, western, and northern regions. The technological and 
industrial revolution enables the central region’s transition to 
green and sustainable development. Henan and Shaanxi should 
enhance investment in industrial technology, expand clean en-
ergy supply, and effectively manage energy and water resources. 
Qinghai must consider the environmental impact of economic 
development and prevent environmental damage during resource 
exploitation. Hunan should speed up industrial upgrading, shift-
ing towards technology- and capital-intensive industries while 
fostering the growth of low-carbon and green sectors.

• TPP: Provinces in TPP, including Shanxi, Xinjiang, and Guangxi, 
differ economically from the eastern region and must prioritize 
future economic growth. They should actively promote the dual-
carbon strategy to foster a low-carbon economic model. Address-
ing carbon-intensive industries through technological innovation 
and industrial upgrading is crucial for sustainable development. 
Xinjiang should utilize its abundant wind and solar resources to 
develop renewable energy industries as a production base. Shanxi 
and Guangxi should transition from traditional energy to green 
energy chemicals through innovation, industrial optimization, 
and enhanced energy efficiency. Developing the green coal chemi-
cal industry, advancing clean and efficient coal power technology, 
and eco-friendly coal mining are vital for achieving economic 
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benefits and reducing carbon emissions. Coordination with re-
gional development plans, considering differences in resource 
endowment and energy infrastructure, is essential for establishing 
a regional low-carbon spatial synergy development pattern.

6. Conclusion

This study introduces a hybrid model combining 𝛿-SBM and OPA 
to analyze CEE under policy preferences and data uncertainties. The 
key contribution of this research is the innovative application of the 
hybrid 𝛿-SBM-OPA model, which offers a more reliable and adapt-
able framework for assessing efficiency in DMUs across various policy 
scenarios. Unlike traditional DEA models that rely on predetermined 
weights, the proposed model adaptively determines efficiency using 
objective data and subjective human judgment, making it especially 
useful for policymakers by accommodating varying policy preferences. 
A significant advancement is the incorporation of policy preferences 
as scenario constraints, optimizing the determination of weights and 
enabling more customized efficiency measurements. Additionally, the 
proposed model accounts for data uncertainties by calculating sensitiv-
ity indicators, providing deeper insights into efficiency differences and 
identifying the most efficient provinces for carbon emission reduction. 
The practical utility of the proposed model is demonstrated by its abil-
ity to simulate the impact of different policy preferences, with K-means 
clustering revealing groups of provinces with similar characteristics 
for targeted benchmarking and policy recommendations, ultimately 
guiding effective carbon reduction strategies at the provincial level.

The ICEE analysis of 30 Chinese provinces illustrates the proposed 
𝛿-SBM-OPA model. This study further examines the impact of eco-
nomic, environmental, and technological policy priorities on ICEE and 
provides policy recommendations for carbon emission reduction. The 
key findings from illustrative application, which provide managerial 
insights, indicate that:

• Regarding the policy preference of ‘‘economy > environment >
technology’’, the average ICEE across 30 provinces in China is 
0.623, with only 12 provinces exceeding this value. The top five 
provinces, Beijing, Shanghai, Guangdong, Jiangxi, and Hainan, all 
have ICEE averages surpassing 0.990. Among the eight economic 
regions, the South Coast exhibits the highest mean ICEE at 0.9892 
and the lowest variance at 0.001. The ICEE values for the East 
Coast, North Coast, Middle Yangtze River, Northeast, and North-
west range from 0.5620 to 0.7523. Conversely, the Southwest and 
Northwest show the lowest ICEE values, with 0.498 and 0.487, 
respectively. Except for the South Coast, the ICEE variances in 
the other regions range from 0.022 to 0.061, indicating certain 
variability.

• The results of the ICEE under different policy preferences show 
that 27 provinces have the optimal ICEE in the technology-
dominant policy preference scenario. Chongqing, Ningxia, and 
Hunan show the optimal ICEE under the environment-dominant 
policy preference scenario. The provinces can be categorized 
into technology-driven, development-balanced, and transition-
potential based on their ICEE characteristics. Technology-driven 
provinces have 18 provinces with an average optimal ICEE of 
0.543, taking Fujian as the ICEE benchmark (0.977). Of these, 
89% are optimal under a technology-dominant policy preference 
and 11% under the environment-dominant policy preference. In 
the development-balanced provinces, 9 have an average optimal 
ICEE of 0.773, with the ICEE benchmark nearing 1, including 
Beijing, Shanghai, Guangdong, and Jiangxi. This category is 
identical to the distribution of optimal policy preferences for 
technology-driven provinces, with 89% of technology-dominant 
and 11% of the environment-dominant. The transition-potential 
provinces, with an average optimal ICEE of 0.692, include three 
provinces where Xinjiang serves as a benchmark with 0.872, 
10 
and all provinces achieve optimal under the technology-dominant 
policy preference.

A limitation of the model formulation is the challenge of trans-
forming the original SBM-OPA multi-objective optimization model into 
a solvable form. This study uses a standardization approach to elim-
inate dimensionality effects, converting the problem into a solvable 
single-objective linear programming model. However, the choice of 
standardization method may affect the efficiency outcome. Therefore, 
future research could explore how to convert OPA into a target-free 
feasible region and integrate it into 𝛿-SBM to improve problem-solving 
efficiency. Another limitation of this study on the application perspec-
tive is that the conclusions drawn are based on a limited context. 
Specifically, this study utilizes single-year industrial carbon emission 
data from 30 provinces in China to demonstrate the proposed model, 
rather than employing multi-year panel data. Further applications in 
diverse scenarios and DMUs, including the use of multi-year data, are 
needed to validate the robustness and effectiveness of the proposed 
model under varying policy preferences and data uncertainty. In ad-
dition to addressing the limitations mentioned above, future empirical 
studies could apply the proposed model. For instance, by collecting 
and analyzing multi-year panel data, long-term trends in CEE could 
be explored. Given the regional differences in economic development, 
resource endowment, and industrial structure, optimal policies may 
differ substantially. Therefore, future research should consider these 
regional characteristics, offer tailored policy recommendations, and 
assess the differential impacts of policy implementation to provide 
more effective and targeted policy support for local governments.
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Appendix

See Tables  A.1 and A.2.

Proof of Lemma  1.  (1) Show that the lower bound of the optimal 
value 𝑍∗ is 0. By the derivation of OPA, the attribute that has a 
higher ranking 𝑟 + 1 is dominated by the one with a lower ranking 𝑟, 
i.e., 𝐴𝑟

𝑗𝑘 ⪰ 𝐴𝑟+1
𝑗𝑘 , which is equivalent to 𝑤𝑟

𝑗𝑘 ≥ 𝑤𝑟+1
𝑗𝑘 . For ∀𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾, 

𝑠𝑘𝑟𝑗𝑘(𝑤𝑟
𝑗𝑘−𝑤

𝑟+1
𝑗𝑘 ) ≥ 0 and 𝑠𝑘𝑟𝑗𝑘(𝑤𝑟=𝑛

𝑗𝑘 ) ≥ 0 holds. The objective function is 
to maximize 𝑍, then there exists min𝑗,𝑘

{

𝑠𝑘𝑟𝑗𝑘(𝑤𝑟
𝑗𝑘 −𝑤𝑟+1

𝑗𝑘 )
}

= max𝑍 =

𝑍∗ ≥ 0 or min𝑗,𝑘
{

𝑠𝑘𝑟𝑗𝑘(𝑤𝑟=𝑛
𝑗𝑘 )

}

= max𝑍 = 𝑍∗ ≥ 0 such that max𝑍 =

𝑍∗ ≥ 0 holds. Thus, the lower bound of the optimal value 𝑍∗ is 0.
(2) Show that the upper bound of the optimal value 𝑍∗ is 1. 

Suppose that there exists 𝜖  such that 𝑠 𝑟 (𝑤𝑟 −𝑤𝑟+1) = 𝑍∗ + 𝜖  and 
𝑗𝑘 𝑘 𝑗𝑘 𝑗𝑘 𝑗𝑘 𝑗𝑘
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Table A.1
Literature on non-parametric methods for assessing CEE.

 
Abbreviations: DEA: Data envelopment analysis; BCC: Banker Charnes and Cooper’s model CCR: Charnes, Cooper, and Rhodes’s model; Super-SBM: Super slack-
based measure; NDDF: Non-radial directional distance function; INDEA: Interval number DEA.
Table A.2
Regional characteristics of industrial carbon efficiency.
 Region Province Efficiency 

score
Mean 
value

Variance Region Province Efficiency 
score

Mean 
value

Variance

 
North coast

Beijing 0.994

0.646 0.054 Northwestern

Ningxia 0.288

0.562 0.046

 
 Tianjin 0.718 Gansu 0.453  
 Hebei 0.398 Qinghai 0.639  
 Shandong 0.473 Xinjiang 0.867  
 
East coast

Shanghai 0.995
0.752 0.003 Northeast

Liaoning 0.456
0.597 0.061

 
 Jiangsu 0.555 Jilin 0.943  
 Zhejiang 0.706 Hei-

longjiang
0.391  

 
South coast

Fujian 0.974
0.989 0.001 Middle reaches of

the Yellow River

Shanxi 0.423

0.498 0.022

 
 Guangdong 0.993 Neimenggu 0.749  
 Hainan 1.000 Henan 0.461  
 

Southwestern

Guangxi 0.767

0.487 0.031

Shaanxi 0.361  
 Chongqing 0.547

Middle reaches of
the Yangtze River

Anhui 0.421

0.601 0.053

 
 Sichuan 0.522 Jiangxi 0.997  
 Guizhou 0.308 Hubei 0.488  
 Yunnan 0.294 Hunan 0.500  
𝑠𝑘𝑟𝑗𝑘(𝑤𝑟=𝑛
𝑗𝑘 ) = 𝑍∗ + 𝜖𝑗𝑘 for ∀𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾. If 𝜖𝑗𝑘 < 0, 𝑠𝑘𝑟𝑗𝑘(𝑤𝑟

𝑗𝑘 −𝑤𝑟+1
𝑗𝑘 ) =

�̄� < 𝑍∗ or 𝑠𝑘𝑟𝑗𝑘(𝑤𝑟=𝑛
𝑗𝑘 ) = �̄� < 𝑍∗ holds, which contradicts the objective 

of maximizing the minimum 𝑍. Thus, 𝜖𝑗𝑘 ≥ 0 and there must be at 
least one 𝜖𝑗𝑘 = 0 such that 𝑠𝑘𝑟𝑗𝑘(𝑤𝑟

𝑗𝑘−𝑤𝑟+1
𝑗𝑘 ) = 𝑍∗ and 𝑠𝑘𝑟𝑗𝑘(𝑤𝑟=𝑛

𝑗𝑘 ) = 𝑍∗. 
Then, the cumulative sum of the last 𝑘 constraints for each expert 𝑗 ∈ 𝐽
in ascending order yields

𝑤𝑟
𝑗𝑘 = 1

𝑠𝑘

⎛

⎜

⎜

⎝

𝑛
∑

ℎ=𝑟𝑗𝑘

1
ℎ

⎞

⎟

⎟

⎠

(𝑍∗ + 𝜖𝑗𝑘).

Substituting the normalized constraint yields
𝑚
∑

𝑘=1

𝑛
∑

𝑗=1
𝑤𝑟

𝑗𝑘 = 1 ⇔ 𝑍∗
𝑚
∑

𝑘=1

𝑛
∑

𝑗=1

⎛

⎜

⎜

⎝

1
𝑠𝑘

𝑛
∑

ℎ=𝑟𝑗𝑘

1
ℎ

⎞

⎟

⎟

⎠

+
𝑚
∑

𝑘=1

𝑛
∑

𝑗=1

⎛

⎜

⎜

⎝

𝜖𝑗𝑘
𝑠𝑘

𝑛
∑

ℎ=𝑟𝑗𝑘

1
ℎ

⎞

⎟

⎟

⎠

= 1,

⇔ 𝑍∗ =
⎛

⎜

⎜

⎝

1 −
𝑚
∑

𝑘=1

𝑛
∑

𝑗=1

⎛

⎜

⎜

⎝

𝜖𝑗𝑘
𝑠𝑘

𝑛
∑

ℎ=𝑟𝑗𝑘

1
ℎ

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

/(

𝑛
𝑚
∑

𝑘=1

1
𝑘

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟

.

≤1 ≥1
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It follows that 𝑍∗ ≤ 1, which implies the upper bound of the optimal 
value 𝑍∗ is 1. □

Data availability

Data will be made available on request.
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